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Resumen. En este art́ıculo, se describe una arquitectura para interactuar con
el sistema de Cálculo Simbólico Kenzo (dedicado a la Topoloǵıa Algebraica).

El acceso que se proporciona esta mediado por medio de varios artefactos

basados en XML, produciendo una capa intermedia inteligente. La parte más
externa de la arquitectura ha sido creada usando Diccionarios de Contenido

OpenMath y el correspondiente Phrasebook. Como consecuencia, varios Dic-
cionarios de Contenido OpenMath para la Topoloǵıa Algebraica Simplicial

han sido desarrollados.

Abstract. In this paper, an architecture to interact with the Kenzo Com-
puter Algebra system (devoted to Algebraic Topology) is described. The

access is mediated by means of several XML-based artifacts, producing an

intelligent intermediary layer. The most external part of the architecture
is devised by using OpenMath Content Dictionaries and the corresponding

PhraseBook. As a by-product, OpenMath Content Dictionaries for Algebraic

and Simplicial Topology are developed for the first time.

1. Introduction

In [16] a first approach to a mediated access to the Kenzo Computer Algebra
system was presented. The main objective was to increase the reliability and us-
ability of the interaction with the Kenzo system. Kenzo was written by Sergeraert
mainly as a research tool (see [11]), to implement his ideas on Constructive Alge-
braic Topology (see [27]). Due to this characteristic, most attention was paid to
performance and to extend the scope of the system, but other aspects as the user
interface were underrated. Indeed the user interface to Kenzo is Common Lisp
itself, the language in which the system was programmed. This is a clear obsta-
cle to increasing the number of users, likely researchers, teachers and students of
Algebraic Topology, with no prior knowledge of Common Lisp.

The idea leading our previous paper [16] was that it is not possible to expose
Kenzo in its full power to a non-trained user. Instead of it, we propose a mediated
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access: an access through an intermediary layer that will control the user inputs
and will stop his request if it is not allowed by Kenzo (that is to say, if Kenzo will
raise an error when dealing with it). This implies to put more structure on top of
Kenzo, and, as a consequence, to lose some kinds of free interactions with Kenzo
(by means of ad-hoc Common Lips programs, for instance). Thus, we give to the
user less computational power, but with more reliability and usability. Our bet
is that this structured way to interact with Kenzo will be enough for most of the
potential users. To this aim it is necessary that knowledge on Algebraic Topology
is managed in an intermediary layer, in such a way that some intelligent behavior
is obtained, guiding the user through the complexities of the Kenzo system.

In [16] emphasis was put in methodological and architectural issues. The ideas
were made concrete by means of an implementation of the intermediary layer, and
a Graphical User Interface (GUI) which takes profit from it. One of the com-
ments raised by that paper was that the processes, even if organized by means
of XML-based documents, were using mostly ad-hoc mechanisms, specified by us.
OpenMath was suggested to us as a good alternative to make our proposal more
standard, and to make easier the interaction with other systems. This enhance-
ment is undertaken in this paper, adapting our general architecture to include
OpenMath interfaces. As a proof of feasibility an experimental GUI is presented,
where the interaction is guided by OpenMath Content Dictionaries (CDs) (the GUI
presented in [16] was structured, as usual, by means of constructing objects and
then operating on them). This GUI opens the possibility of integrating dynami-
cally new modules, by loading some new OpenMath Content Dictionaries. As a
by-product, some fresh OpenMath Content Dictionaries devoted to Algebraic and
Simplicial Topology have been developed.

The rest of the paper is organized as follows. The next section presents an-
tecedents of this work. Section 3 describes the architecture of our system, includ-
ing in Subsection 3.1 the translation from Kenzo classes to OpenMath Content
Dictionaries. Knowledge management in the intermediary layer is dealt with in
Section 4. Then, in Section 5 our experimental GUI is presented. The paper ends
with a section on Further work and Conclusions, and finally the bibliography.

2. Antecedents

Kenzo [11] is a Common Lisp system, devoted to Symbolic Computation in
Algebraic Topology. It was developed in 1997 under the direction of F. Serger-
aert, and has been successful, in the sense that it has been capable of computing
homology groups unreachable by any other means. Having detected accessibility
and usability as two weak points in Kenzo (implying difficulties in increasing the
number of users of the system), several proposals have been studied to interoper-
ate with Kenzo (since the original user interface is Common Lisp itself, the search
for other ways of interaction seems mandatory to extend the use of the system).
The most elaborated approach was reported in [2]. There, we devised a remote
access to Kenzo, using CORBA [26] technology. An XML extension of MathML [3]
played a role there too, but just to give genericity to the connection (avoiding the
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Figure 1. Microkernel architecture of the system.

definition in the CORBA Interface Description Language [26] of a different specifi-
cation for each Kenzo class and datatype). There was no intention of taking profit
from the semantics possibilities of MathML. Being useful, this approach ended in
a prototype, and its enhancement and maintenance were difficult, due both to the
low level characteristics of CORBA and to the pretentious aspiration of providing
full access to Kenzo functionalities. We could classify the work of [2] in the same
line as [6] or in the initiative IAMC and its corresponding workshop series (see,
for instance, [8, 30]), where the emphasis is put into powerful and generic access
to symbolic computation engines.

The first prototype for a mediated access to the Kenzo system was presented in
[16]. That work is improved in several aspects in this paper. For instance, in our
first prototype we used a MathML extension to represent mathematical concepts
from Algebraic Topology but we were aware that it is not enough to express the
complete meaning of these concepts. In MathML 3.0, one of the natural ways
to represent content MathML expressions is to give a formal semantics in terms
of OpenMath objects [5]. Instead of trying this rather indirect way, we have
decided to move to an OpenMath approach. This implies several changes in our
implementation of the proposed architecture (namely, including a Phrasebook), the
introduction of new Content Dictionaries devoted to Topology concepts, and the
possibility of having a GUI where OpenMath documents are explicitly managed,
easing the interaction with other symbolic computation systems. These features
are commented on the following sections.

3. Architecture of the system

In [16], we presented an architecture for the software system, inspired by the
Microkernel architectural pattern [4]. This pattern gives a global view as a plat-
form, in terminology of [4], which implements a virtual machine with applications
running on top of it, namely a framework (in the same terminology). When intro-
ducing OpenMath machinery, the high level perspective of the system includes a
Phrasebook node, as shown in Figure 1 (compare with [16] where the architecture
was complicated by the occurrence of an external server and an adapter, roles that
are now played, in an integrated manner, by our Phrasebook).
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There are three different parts in our framework:
an internal server,
a Microkernel, and
a Phrasebook.

Kenzo itself, wrapped with an interface based on XML-RPC [31], is acting as an
internal server. The Microkernel plays the role of an intermediary layer and has
two main objectives. On the one hand, it is responsible of the intelligent processing;
see more details on it in Section 4. On the other hand, the Microkernel, which
includes an XML processor, defines a link between the standard XML-RPC used
by Allegro Common Lisp [13] and OpenMath. The conversion of an OpenMath
object to/from the internal representation is performed by a Phrasebook, allowing
the system to establish the final connection with clients.

A simplified version of this architecture (without the Phrasebook) would suffice
if our objective was simply to build a GUI for Kenzo. Nevertheless, our intention
is to build a framework capable of linking Kenzo with any possible client. This
includes GUIs, but also web applications, web services, and, in addition, other
symbolic computation systems (as GAP [15], for instance). This last aspect makes
convenient to export the Kenzo mathematical knowledge in an standard format
as OpenMath.

Each part of the framework has its own XML schema. In addition to the
XML-RPC and OpenMath standards, we have defined another language called
XML-Kenzo. This is a language expressing the concepts of Algebraic Topology,
but free of the OpenMath verbose syntax. Furthermore, it gives more structure
to the Kenzo primitives (distinguishing, for instance, between constructors and
operations), defining something as a type system (see Section 4). Part of the XML
schema for XML-Kenzo is described diagrammatically in Figure 2. However, the
high level description provided by XML-Kenzo is not suitable to communicate
with the internal server, because a low level register of each Kenzo session must
be maintained (for instance, storing the unique identifier referring to each object,
in order to avoid recalculations). Thus, a procedural language based on Kenzo
conventions is needed; XML-RPC provides this functionality.

In the most external part inside our framework, all necessary mathematical
concepts are included by means of OpenMath Content Dictionaries [5]. Figure 3
shows a fragment of the Simplicial Sets Content Dictionary. The structure of these
new Content Dictionaries is dealt with in the following subsection.

To illustrate how information flows among the different layers, in Figure 4 we
show how a Kenzo command (namely, the calculation of the third homology group
of the sphere of dimension 3) will be transformed from a user command coming
from a client (top part of the figure, expressed in OpenMath) to the final XML-
RPC format (the conventional Lisp call is shown, too; however our internal server,
Kenzo wrapped with an XML-RPC interface, will execute the command directly).

3.1. From Kenzo classes to OpenMath Content Dictionaries. The Kenzo
system works with the main mathematical categories used in Combinatorial Alge-
braic Topology, [24]. In Figure 5 a fragment of the Kenzo class diagram is shown
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Figure 2. Description of the XML-Kenzo Schema.

Figure 3. Fragment of Simplicial Sets Content Dictionary.

(the full description can be found in [28]). From this part of the class diagram,
that are the objects used in our system, the OpenMath Content Dictionaries have
been defined.
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Figure 4. Transforming XML representations.

Figure 5. Fragment of the class diagram of the Kenzo system.

The starting point is to consider the Kenzo classes as the basic types of our
system and some objects predefined in the Kenzo system (like spheres, Moore
spaces and so on) as predefined objects of those types.

For each category represented in the diagram, an OpenMath Content Dictio-
nary has been defined. In particular, four dictionaries have been written: Chain-
Complexes.ocd, Simplicial-Sets.ocd, Simplicial-Groups.ocd and Abelian-Simplicial-
Groups.ocd. The guideline used to define each Content Dictionary is to include in
it the names of all the Kenzo primitives that return an object of the corresponding
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Figure 6. Definition of the sphere.

class. For instance, in Chain-Complexes.ocd every operation which returns a chain
complex is included.

To define the objects that are constructed by Kenzo from scratch, we use the
OpenMath label “CDDefinition”. These constructions must be included in the
corresponding Content Dictionary. Such a definition contains: (1) the name of the
object, (2) a description of its arguments (with the constraints fixed by Kenzo),
and finally (3) an example of a particular instance of the construction. In Figure
6 (it is an excerpt of Figure 3, and so it is part of the Simplicial-Sets.ocd) the
definition of simplicial sets modeling the Sphere is shown. There the description
indicates a constraint: the dimension of a sphere should be between 1 and 14 (this
restriction comes from the current Kenzo implementation).

Due to our decision of organizing the Content Dictionaries with respect to the
return types, the class hierarchy showed in Figure 5 suffers, in some sense, an inver-
sion in OpenMath. For instance, each operation producing a simplicial group also
produces implicitly a simplicial set (since in Kenzo simplicial groups inherit from
simplicial sets). Then, each operation in the Content Dictionary corresponding to
a subclass (as Simplicial-Group.ocd in our example) must appear in the Content
Dictionary of the superclass (as Simplicial-Set.ocd). This is got by means of the
“CDUses” OpenMath label. This sort of inverted hierarchy is illustrated in Figure
7 in the case of the Chain Complex Content Dictionary. Let us note that we are
not proposing this technique as a solution to the inheritance problem of Content
Dictionaries (a difficult problem as recognized by the OpenMath community, see
the end of the subsection 3.1.1 The Design Problem of [18]). This is just a prag-
matical trick, useful in our very concrete setting (another, more general solution,
could be based on the notion of OpenMath Document ; see [18] for details).

Finally, Kenzo Object is the superclass of the system grouping all the elements
of other classes but this class does not represent any category, this class is the glue
for the rest of classes. The corresponding OpenMath concept is that of Content



92 JÓNATHAN HERAS Y VICO PASCUAL

Figure 7. Content Dictionaries used by the Chain-Complex CD.

Figure 8. Constructors Content Dictionary Group.

Dictionary Group. Figure 8 shows the definition of this CD Group, that we have
called Constructors.cdg.

4. Knowledge Management in the Intermediary Layer

The system as a whole will improve Kenzo including the following “intelligent”
enhancements:

1. Controlling the input specifications on constructors.
2. Avoiding some operations on objects which will raise errors.
3. Chaining methods in order to provide the user with new tools.
4. Determining if a calculation can be done in a local computer or should be

derived to a remote server.
In order to explain the differences between points 1 and 2, it is worth noting

that in Kenzo there are two kinds of data. The first one is representing spaces
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in Algebraic Topology (by spaces we mean here, any data structure having both
behavior and elements belonging to it, such as a simplicial set, a simplicial group, a
chain complex, and so on). The second kind of data is used to represent elements
of the spaces. Thus, in a typical session with Kenzo, the users proceed in two
steps: first, constructing some spaces, and second, applying some operators on the
(elements of the) spaces previously built. This organization in two steps has been
described by using Algebraic Specification methods in [19] and [10], for instance.
Therefore, the first item in the enumeration refers to the inputs for the constructors
of spaces, and the second item refers to some operations on concrete spaces.

Kenzo is, in its pure mode, an untyped system (or rather, a dynamically typed
system), inheriting its power and its weakness from Common Lisp. Thus, for
instance, in Kenzo a user could apply a constructor to an object without satisfying
its input specification. For instance, the method constructing the classifying space
of a simplicial group could be called on a simplicial set without a group structure
over it. Then, at runtime, Common Lisp would raise an error informing the user
of this restriction. This is shown in the following fragment of a Kenzo session:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (loop-space (sphere 4)) z
[K6 Simplicial-Group]
> (classifying-space (loop-space (sphere 4))) z
[K18 Simplicial-Set]
> (sphere 4) z
[K1 Simplicial-Set]
> (classifying-space (sphere 4)) z
;; Error: No method in generic function CLASSIFYING-SPACE
;; is applicable to arguments: [K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the first command, namely (loop-space (sphere 4)), we construct a
simplicial group. Then, in the next step we are verifying that a simplicial group
has a classifying space (which is, in general, just a simplicial set). In the third
command, we check that the sphere of dimension 4 is constructed in Kenzo as a
simplicial set. Thus, when in the last command we try to construct the classifying
space of a simplicial set, the Common Lisp Object System (CLOS) raises an error.

In the current version of our system this kind of error is controlled, because
the inputs for the operations between spaces can be only selected among the
spaces with suitable characteristics. This same idea could be used to improve
the reliability of internal processes, by controlling the outputs of the intermediary
computations. In Figure 9, we show the situation corresponding in our system to
the example introduced before in pure Kenzo. There we use as illustration the
experimental GUI we will describe in Section 5. In that figure, it can be seen
that for the classifying operation just the spaces which are simplicial groups are
candidates to be selected. This enriches Kenzo with something as a (semantical)
type system which has been defined into our XML-Kenzo.

With respect to the second item in the previous enumeration, the most impor-
tant example in the current version is the management of the connection degree of
spaces. Kenzo allows the user to construct, for instance, the loop space of a non
simply connected space (as the sphere of dimension 1). The result is a simplicial
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Figure 9. Screen-shot of Kenzo Interface with a session related
to classifying spaces.

set on which some operations (for instance, to compute the set of faces of a sim-
plex) can be achieved without any problems. On the contrary, theoretical results
ensure that the homology groups are not of finite type, and then they cannot be
computed. In pure Kenzo, the user could ask for a homology group of such a
space, catching a runtime error.

In our current version of the system, the intermediary layer includes a small
expert system, computing, in a symbolic way (that is to say, working with the de-
scription of the spaces, and not with the spaces themselves considered as Common
Lisp objects), the connection degree of a space. The set of rules gives a connection
degree to each space builder (for instance, a sphere of dimension n has connec-
tion degree n − 1), and then a rule for each operation on spaces. For instance,
loop space decreases the connection degree of its input in one unity, suspension
increases it in one unity, a cartesian product has, as connection degree, the mini-
mum of the connection degrees of its factors, and so on. From the design point of
view, a Decorator pattern [14] was used, decorating each space with an annotation
of its connection degree in the intermediary layer. Then, when a computation (of
a homology group, for instance) is demanded by a user, the intermediary layer
monitors if the connection degree allows the transferring of the command to the
Kenzo kernel, or a warning must be sent to the user.

As for item three, the best example is that of the computation of homotopy
groups. In pure Kenzo, there is no final function allowing the user to compute
them. Instead, there is a number of complex algorithms, allowing a user to chain
them to get some homotopy groups. Our current user interface has an option
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to compute homotopy groups. The intermediary layer is in charge of chaining
the different algorithms present in Kenzo to reach the final objective. In addition,
Kenzo, in its current version, has limited capabilities to compute homotopy groups
(depending on the homology of Eilenberg-Mac Lane spaces that are only partially
implemented in Kenzo), so the chaining of algorithms cannot be universal. Thus,
the intermediary layer should process the call for a homotopy group, making some
consultations to the Kenzo kernel (computing some intermediary homology groups,
for instance) before deciding if the computation is possible or not (this is still work
in progress).

Regarding point four, our system can be distributed, at present, in two manners:
(a) as a stand-alone application, with a heavy client containing the Kenzo kernel
to be run in the local host computer; (b) as a light client, containing just the user
interface, and every operation and computation is done in a remote server. The
second mode has obvious drawbacks related to the reliability of Internet connec-
tions, to the overhead of management where several concurrent users are allowed,
etc. But option (a) is not fully satisfactory since interesting Kenzo computations
used to be very time and space consuming (requiring, typically, several days of
CPU time on powerful computing servers). Thus a mixed strategy should be con-
venient: the intermediary layer should decide if a concrete calculation can be done
in the local computer or it deserves to be sent to a specialized remote server. (In
this second case, as it is not sensible to maintain open an Internet connection
for several days waiting for the end of a computation, some reactive mechanism
should be implemented, allowing the client to disconnect and to be subscribed in
some way, to the process of computation in the remote server). The difficulties of
this point have two sources: (1) the knowledge here is not based on well-known
theorems (as was the case in our discussion on the connection degree in the second
item of the enumeration), since it is context-dependent (for instance, it depends
on the computational power of a local computer), and so it should be based on
heuristics; (2) the technical problems to obtain an optimal performance are com-
plicated, due, in particular, to the necessity of maintaining a shared state between
two different computers. These technical aspects are briefly commented in the
Further Work section.

With respect to the kind of heuristic knowledge to be managed into the in-
termediary level, there is some part of it that could be considered obvious: for
instance, to ask for an homology group Hn(X) where the degree n is big, should
be considered harder than if n is small, and then one could wonder about a limit
for n before sending the computation to a remote server. Nevertheless, this sim-
plistic view is to be moderated by some expert knowledge: it is the case that in
some kinds of spaces, difficulties decrease when the degree increases. The heuris-
tics should consider each operation individually. For instance, it is true that in the
computation of homology groups of iterated loop spaces, difficulties increase with
the degree of iteration. Another measure of complexity is related to the number of
times a computation needs to call the Eilenberg-Zilber algorithm (see [11]), where
a double exponential complexity bound is reached. Further research is needed to
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Figure 10. Screen-shot of the Main tab of Kenzo Interface.

exploit the expert knowledge in the area suitably, in order to devise a systematic
heuristic approach to this problem.

5. A client for the Framework: an experimental GUI

In [16] we presented a GUI based on usual metaphors: objects are constructed,
and then different operations can be applied on them. Here we are describing
another GUI where OpenMath plays two important roles. On the one hand,
OpenMath Content Dictionaries lead the evolution on the interface itself: when
loading a Content Dictionary, the interface changes, appearing new options in the
toolbar. On the other hand, the results of the operations, and the description of
sessions, are encoded in OpenMath, which is explicitly showed to the user. Even
if the GUI can be considered experimental, in the sense that usability cannot be
considered fully satisfactory, at least it serves to us to illustrate in a very explicit
way the role of OpenMath (and, in particular, it makes evident that the OpenMath
descriptions could be used to interact with other systems offering an OpenMath
interface, too).

In Figure 10, a screen-shot of our GUI is presented. The first time the applica-
tion is loaded, the main toolbar is organized into two menus: File and Help. The
user can configure the interface using the OpenMath Content Dictionaries and the
OpenMath Content Dictionary Groups. When the user exits the application, his
configuration is saved for future sessions.

In the current version the File menu has six options: Add Module, Delete Mod-
ule, Save Session, Load Session, Save Computing, and Exit.

So, the first user task consists in selecting the necessary modules, each module
is associated with one or more OpenMath Content Dictionaries (the OpenMath
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Figure 11. Selection of an OpenMath Content Dictionary.

Content Dictionaries of the system and also the necessary modules are included in
the folder of the GUI). Figure 11 shows the dialog displayed when the Add Module
option is selected.

If the user selects an OpenMath Content Dictionary, its corresponding mod-
ule is loaded, but also all the Content Dictionaries used. For instance, in Fig-
ure 3 a fragment of the OpenMath Content Dictionary of the Simplicial-Sets is
shown. In that case, this Content Dictionary uses the Simplicial-Groups and the
Abelian-Simplicial-Groups Content Dictionaries, so if a user loads the Simplicial-
Sets Content Dictionary, the Simplicial-Groups and the Abelian-Simplicial-Groups
Content Dictionaries are also loaded. When an OpenMath Content Dictionary is
loaded, the GUI main toolbar changes. For instance, when Computing.ocd (this
OpenMath Content Dictionary defines the computations allowed in the system)
is loaded the rest of the OpenMath Content Dictionaries are also loaded, and the
GUI state can be seen in Figure 12.

If an OpenMath Content Dictionary Group is loaded, all the Content Dictio-
nary members of this CD Group are loaded. For instance, the Constructor Con-
tent Dictionary Group, Figure 8, includes the Chain-Complexes, Simplicial-Sets,
Simplicial-Groups and Abelian-Simplicial-Groups Content Dictionaries.

In an analogous way, the modules can be unloaded from the Delete Module
option.

The main toolbar options when the GUI has been set with all its functionality
are: Computing, Chain Complexes, Simplicial Sets, Simplicial Groups and Abelian
Simplicial Groups.

The last four menus are related to the construction of spaces. Each menu
contains all the possible ways of constructing spaces of its associated classes. Each
option allows to build spaces of its associated classes in two different ways. The
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Figure 12. Screen-shot of the Main tab of Kenzo Interface with
the Computing CD loaded.

first one from scratch in Kenzo as options (for instance, in the case of Simplicial
Sets is possible to build spheres, Moore spaces and so on). The second one consists
in constructing spaces from other ones (again in the Simplicial Sets, it is possible
to build cartesian products, suspensions, etc.).

The menu Computing collect all the operations on concrete spaces (instead
of constructing spaces, as in the previous cases). In this menu we concentrate
on calculations over a space. At this time, we offer to compute homology and
homotopy groups.

The rest options of the File menu, Save Session, Load Session and Save Com-
puting, are related to a particular session.

When saving a session a file is produced containing an XML description of the
commands executed by the user in that session. These session files are saved using
the OpenMath format following the rules defined in the corresponding Content
Dictionaries. Figure 13 includes an example of an OpenMath session; this session
file corresponds to the following Kenzo interaction:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (sphere 3) z
[K1 Simplicial-Set]
> (moore 4 2) z
[K6 Simplicial-Set]
> (loop-space (sphere 3) 2) z
[K23 Simplicial-Group]
> (crts-prdc (sphere 3) (moore 4 2)) z
[K35 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 13. Sample of an OpenMath session file.

This session file can be loaded from the Load Session option. Besides, the
computations made during a session can be saved, in the same format, from the
Save Computing option.

As can be seen in the GUI, it also has three tabs: Main, Session and Computing
that are useful when a module is loaded.

The Main tab is separated into three areas. On the left side, a list with the
spaces already constructed during the current session is maintained. When a space
is selected (the one denoted by SG 3 in Figure 14), its description is displayed in
the right area using OpenMath, and just below the usual mathematical notation
of the space can be found.

When the Session tab is focused, a similar screen to Figure 15 is shown. The
objects built during the current session, in an ordered way, are rendered. In
the same way, Figure 16 shows a screen with the computations in the current
session, displayed into the Computing tab. Both sessions and computations could
be expressed in the usual mathematical notation, as we have done in the bottom
right area of the Main tab (see Figure 14). This was the option in the GUI
described in [16]. Here we have preferred to keep explicitly the OpenMath notation
to illustrate that this could be the right interface with other systems.
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Figure 14. The Main tab with an example of session.

Figure 15. The Session tab with an example of session.

6. Further work and Conclusions

As a further demonstration of the adequacy of our framework, which pretends
to be neutral with respect to the technology used in the client-side, two OpenMath
Web Services have been developed. These web services allow to use the framework
only from the OpenMath Content Dictionaries (no knowledge about Lisp or Kenzo
is needed). So, a developer can build any other application in Java, .NET and so
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Figure 16. The Computing tab with some computations.

on, knowing only our OpenMath Content Dictionaries and, of course, the web
services technology. The difference between both web services is the way in which
the result is returned. The first web service makes a request and waits until the
result is available. On the contrary, in the second web service the connection is not
maintained, for this reason it needs not only the OpenMath request but also an
e-mail direction where the result of the request is returned. Other different clients
should be experienced (as complete web applications, for instance), in order to
ensure the different layers are uncoupled enough in our framework. The dynamical
style of our experimental GUI should be also explored further, by adding new
modules, no necessarily present in Kenzo in its current version.

But the most important issue to be tackled in the next versions of the system is
how organizing the decision on when a calculation should be derived to a remote
server. To understand the nature of the problem it is necessary to consider that
there are two kinds of state in our context. Starting from the most simple, the state
of a session can be described by means of the spaces that have been constructed
so far. Then, to encode (and recover) such a state, a session file as explained in the
previous section would be enough: an OpenMath document containing a sequence
of calls to different constructors and methods. In this case, when a calculation
is considered too hard to be computed in a local computer, the whole session
file could be transmitted to the remote server. There, executing step-by-step the
session file, the program will re-find the same state of the local session, proceeding
to compute the desired result and sending it to the client. Of course, as mentioned
previously, some kind of subscription tool should be enabled, in such a way that
the client could stop its running, and then to receive the result (or a notification
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indicating the result is already available somewhere), after some time (perhaps
some days or weeks of computation on the remote server).

Even if this approach can be considered reasonable as a first step, it has turned
out to be too simplistic to deal with the richness of Kenzo. A space in Kenzo
consists in a number of methods describing its behavior (explaining, for instance,
how to compute the faces of its elements). Due to the high complexity of the
algorithms involved in Kenzo, a strategy of memoization has been systematically
implemented. As a consequence, the state of a space evolves after it has been
used in a computation (of a homology group, for instance). Thus, the time needed
to compute, let us say, a face, depends on the concrete states of every space
involved in the calculation (in the more explicit case, to re-calculate a face on a
space could be negligible in time, even if in the first occasion this was very time
consuming). This notion of state of a space is transmitted to the notion of state
of a session. We could speak of two states of a session: the one shallow evoked
before, that is essentially static and can be recovered by simply re-executing the
top-level constructor calls; and the other deep state which is dynamic and depends
on the computations performed on the spaces.

To analyse the consequences of this Kenzo organization, we should play with
some scenarios. Imagine during a local session a very time consuming calculation
appears; then we could simply send the shallow state of the session to the remote
server, because even if some intermediary calculations have been stored in local
memory, they can be re-computed in the remote server (finally, if they are cheap
enough to be computed on the local computer, the price of re-computing them
in the powerful remote server would be low). Once the calculation is remotely
finished, there is no possibility of sending back the deep state of the remote session
to the local computer because, usually, the memory used will exhaust the space in
the local computer. Thus, it could seem that to transmit the shallow state would
be enough. But, in this picture, we are losing the very reason why Kenzo uses the
memoization (dynamic programming) style. Indeed, if after obtaining a difficult
result (by means of the remote server) we resume the local session and ask for
another related difficult calculation, then the remote server will initialize a new
session from scratch, being obligated to re-calculate every previous difficult result,
perhaps making the continuation of the session impossible. Therefore, in order to
take advantages of all the possibilities Kenzo is offering now on powerful scientific
servers, we are faced with some kind of state sharing among different computers
(the local computers and the server), a problem known as difficult in the field of
distributed object-oriented programming.

In short, even if our initial goal was not related to distributed computing, we
found that in order to enable our intermediary layer as an intelligent assistant
with respect to the classification of calculations as simple (runnable on a standard
local computer) or complicated (to be sent to a remote server), we should solve
problems of distributed systems. Thus, a larger perspective is necessary, and
we are working with the Broker architectural pattern, see [4], in order to find a
natural organization of our intermediary layer. From the symbolic computation
literature, we will look for inspiration in different projects and frameworks such as
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the MathWeb software bus [23], its successor the MathServe Framework [22], the
MoNET project [25, 7, 9] or the MathBroker [20] and MathBroker II [21] projects,
as well as in other works as [29], [32] or [12].

As a final direction of research, we could try to take more advantage of the
semantical possibilities of OpenMath. Concretely, we could include the axioms
which the categories encoded in our Content Dictionaries really must satisfy. This
will open a way to integrate some deductive capabilities in our system. To this
aim, it could be interesting to interface it in some manner with the Common Lisp
theorem prover ACL2 [17], which has been already used to formalize some aspects
of Simplicial Topology [1].

As a conclusion, we claim that OpenMath can be smoothly integrated in our
Framework, acting as an external layer. The intermediary layer converts Open-
Math descriptions into low level XML-RPC documents and, in addition, is capable
of an intelligent processing of the user commands. This intelligent mediated ac-
cess can be achieved without using traditional Artificial Intelligence techniques,
but managing some expert Mathematical Knowledge (on Algebraic Topology, in
our case) by means of our XML-Kenzo schema, specially designed to work with
spaces in a symbolic manner (that it to say, to work with their XML descriptions,
instead of with their Common Lisp Kenzo representation). This put more struc-
ture on top of Kenzo (namely, something as a semantical type system), giving less
computational power, but interactions more usable and reliable.
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Mathématiques 126(5), 389–412, 2002.

[28] F. Sergeraert. Common Lisp, Typing and Mathematics. Talk of the EACA Meeting at

Ezcaray (Spain), 2001.
[29] E. Smirnova, C.M. So, S.M. Watt. An architecture for distributed mathematical web

services. Lecture Notes in Computer Science 3119, 363–377, 2004.

[30] P.S. Wang, N. Kajler, Y. Zhou, X. Zou. Initial design of a Web-Based Mathematics
Education Framework. En Proceedings Internet Accessible Mathematical Computation 2002.

http://www.symbolicnet.org/conferences/iamc02/wme.pdf

[31] D. Winer. Extensible Markup Language-Remote Procedure Call (XML-RPC). http://www.
xmlrpc.com.

[32] J. Zhu, Y. Wu, F. Xie, G. Yang, Q. Wang, J. Mao, M. Shen. A model for Distributed
Computation over the Internet. En Proceedings Internet Accessible Mathematical Compu-
tation 2003. http://www.symbolicnet.org/conferences/iamc03/zhu.pdf.
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